219 research outputs found

    Control System Analysis and Synthesis via Linear Matrix Inequalities

    Get PDF
    A wide variety of problems in systems and control theory can be cast or recast as convex problems that involve linear matrix inequalities (LMIs). For a few very special cases there are "analytical solutions" to these problems, but in general they can be solved numerically very efficiently. In many cases the inequalities have the form of simultaneous Lyapunov or algebraic Riccati inequalities; such problems can be solved in a time that is comparable to the time required to solve the same number of Lyapunov or Algebraic Riccati equations. Therefore the computational cost of extending current control theory that is based on the solution of algebraic Riccati equations to a theory based on the solution of (multiple, simultaneous) Lyapunov or Riccati inequalities is modest. Examples include: multicriterion LQG, synthesis of linear state feedback for multiple or nonlinear plants ("multi-model control"), optimal transfer matrix realization, norm scaling, synthesis of multipliers for Popov-like analysis of systems with unknown gains, and many others. Full details can be found in the references cited

    Autologous whole ram seminal plasma and its vesicle-free fraction improve motility characteristics and membrane status but not in vivo fertility of frozen-thawed ram spermatozoa

    Get PDF
    Motility characteristics (assessed subjectively and with computer-assisted semen analysis) and membrane status (after staining with chlortetracycline) of washed and non-washed frozen-thawed ram spermatozoa were evaluated after incubation in buffer and buffer containing autologous whole seminal plasma or one of its two fractions: the pellet of membrane vesicles obtained by ultracentrifugation (and used at three times normal protein concentration) or the vesicle-free supernatant fraction. Whole seminal plasma and supernatant, but not membrane vesicles, improved the motility characteristics of spermatozoa after 3 and 6 h of post-thaw incubation compared with the control buffer. Resuspension and incubation with whole seminal plasma, supernatant or membrane vesicles lowered the proportion of acrosome-reacted frozen-thawed spermatozoa compared with the control buffer. Unwashed frozen-thawed semen from three rams, incubated with autologous whole seminal plasma or its fractions and inseminated using cervical or intrauterine artificial insemination, had no effect on pregnancy rates of ewes in synchronized oestrus. However, fertility was higher after laparoscopic than cervical insemination (44.9 vs 12.3%, p < 0.001). In conclusion, resuspension and incubation of frozen-thawed ram spermatozoa in autologous whole seminal plasma or its vesicle-free supernatant fraction improved their motility characteristics and, with membrane vesicles, membrane status, but these benefits were not reflected in improved fertility after cervical or intrauterine insemination. © 2007 The Authors

    Inference algorithms for gene networks: a statistical mechanics analysis

    Full text link
    The inference of gene regulatory networks from high throughput gene expression data is one of the major challenges in systems biology. This paper aims at analysing and comparing two different algorithmic approaches. The first approach uses pairwise correlations between regulated and regulating genes; the second one uses message-passing techniques for inferring activating and inhibiting regulatory interactions. The performance of these two algorithms can be analysed theoretically on well-defined test sets, using tools from the statistical physics of disordered systems like the replica method. We find that the second algorithm outperforms the first one since it takes into account collective effects of multiple regulators

    Optimization in High Dimensions via Accelerated, Parallel, and Proximal Coordinate Descent

    Get PDF
    International audience<p>We propose a new randomized coordinate descent method for minimizing the sum of convex functions each of which depends on a small number of coordinates only. Our method (APPROX) is simultaneously Accelerated, Parallel and PROXimal; this is the first time such a method is proposed. In the special case when the number of processors is equal to the number of coordinates, the method converges at the rate 2ωˉLˉR2/(k+1)22\bar{\omega}\bar{L} R^2/(k+1)^2 , where kk is the iteration counter, ωˉ\bar{\omega} is a data-weighted \emph{average} degree of separability of the loss function, Lˉ\bar{L} is the \emph{average} of Lipschitz constants associated with the coordinates and individual functions in the sum, and RR is the distance of the initial point from the minimizer. We show that the method can be implemented without the need to perform full-dimensional vector operations, which is the major bottleneck of accelerated coordinate descent, rendering it impractical. The fact that the method depends on the average degree of separability, and not on the maximum degree, can be attributed to the use of new safe large stepsizes, leading to improved expected separable overapproximation (ESO). These are of independent interest and can be utilized in all existing parallel randomized coordinate descent algorithms based on the concept of ESO. In special cases, our method recovers several classical and recent algorithms such as simple and accelerated proximal gradient descent, as well as serial, parallel and distributed versions of randomized block coordinate descent. \new{Due of this flexibility, APPROX had been used successfully by the authors in a graduate class setting as a modern introduction to deterministic and randomized proximal gradient methods. Our bounds match or improve on the best known bounds for each of the methods APPROX specializes to. Our method has applications in a number of areas, including machine learning, submodular optimization, linear and semidefinite programming.</p

    Robustness analysis of discrete predictor-based controllers for input-delay systems

    Full text link
    In this article, robustness to model uncertainties are analysed in the context of discrete predictor-based state-feedback controllers for discrete-time input-delay systems with time-varying delay, in an LMI framework. The goal is comparing robustness of predictor-based strategies with respect to other (sub)optimal state feedback ones. A numerical example illustrates that improvements in tolerance to modelling errors can be achieved by using the predictor framework.The authors are grateful for grant nos. DPI2008-06737-C02-01, DPI2008-06731-C02-01, DPI2011-27845-C02-01 and PROMETEO/2008/088 from the Spanish and Valencian governments.González Sorribes, A.; Sala, A.; García Gil, PJ.; Albertos Pérez, P. (2013). Robustness analysis of discrete predictor-based controllers for input-delay systems. International Journal of Systems Science. 44(2):232-239. https://doi.org/10.1080/00207721.2011.600469S232239442Boukas, E.-K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability. Mathematical Problems in Engineering, 2006, 1-10. doi:10.1155/mpe/2006/42489Du, D., Jiang, B., & Zhou, S. (2008). Delay-dependent robust stabilisation of uncertain discrete-time switched systems with time-varying state delay. International Journal of Systems Science, 39(3), 305-313. doi:10.1080/00207720701805982El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. doi:10.1109/9.618250Gao, H., & Chen, T. (2007). New Results on Stability of Discrete-Time Systems With Time-Varying State Delay. IEEE Transactions on Automatic Control, 52(2), 328-334. doi:10.1109/tac.2006.890320Gao, H., Wang, C., Lam, J., & Wang, Y. (2004). Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proceedings - Control Theory and Applications, 151(6), 691-698. doi:10.1049/ip-cta:20040822Gao, H., Chen, T., & Lam, J. (2008). A new delay system approach to network-based control. Automatica, 44(1), 39-52. doi:10.1016/j.automatica.2007.04.020Garcia , P , Castillo , P , Lozano , R and Albertos , P . 2006 . Robustness with Respect to Delay Uncertainties of a Predictor Observer Based Discrete-time Controller . Proceeding of the 45th IEEE Conference on Decision and Control . 2006 . pp. 199 – 204 .Guo , Y and Li , S . 2009 . New Stability Criterion for Discrete-time Systems with Interval Time-varying State Delay . Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference . 2009 . pp. 1342 – 1347 .Hägglund, T. (1996). An industrial dead-time compensating PI controller. Control Engineering Practice, 4(6), 749-756. doi:10.1016/0967-0661(96)00065-2V.J.S. Leite, and Miranda, M.F. (2008), ‘Robust Stabilization of Discrete-time Systems with Time-varying Delay: An LMI Approach’,Mathematical Problems in Engineering, 2008, 15 pages (doi:10.1155/2008/875609)Liu, X. G., Tang, M. L., Martin, R. R., & Wu, M. (2006). Delay-dependent robust stabilisation of discrete-time systems with time-varying delay. IEE Proceedings - Control Theory and Applications, 153(6), 689-702. doi:10.1049/ip-cta:20050223Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Palmor, Z.J. (1996), ‘Time-delay Compensation – Smith Predictor and Its Modifications’, inThe Control Handbook, ed. W.S. Levine, Boca Raton: CRC Press, pp. 224–237Pan, Y.-J., Marquez, H. J., & Chen, T. (2006). Stabilization of remote control systems with unknown time varying delays by LMI techniques. International Journal of Control, 79(7), 752-763. doi:10.1080/00207170600654554Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10), 1667-1694. doi:10.1016/s0005-1098(03)00167-5Wang, Q.-G., Lee, T. H., & Tan, K. K. (1999). Finite-Spectrum Assignment for Time-Delay Systems. Lecture Notes in Control and Information Sciences. doi:10.1007/978-1-84628-531-8He, Y., Wu, M., Han, Q.-L., & She, J.-H. (2008). Delay-dependentH∞control of linear discrete-time systems with an interval-like time-varying delay. International Journal of Systems Science, 39(4), 427-436. doi:10.1080/00207720701832531Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Zhang, B., Xu, S., & Zou, Y. (2008). Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica, 44(11), 2963-2967. doi:10.1016/j.automatica.2008.04.01

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
    corecore